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Time and Events
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Time plays a special role in Standard Quantum Theory. The concept of time
observable causes many controversies there. In Event-Enhanced Quantum Theory
(EEQT) SchroÈ dinger’ s differential equation is replaced by a piecewise
deterministic algorithm that describes also the timing of events. This allows us
to revisit the problem of time of arrival in quantum theory.

1. INTRODUCTION

Event-Enhanced Quantum Theory (EEQT) was invented to answer John

Bell’s concerns about the status of the measurement problem in quantum

theory (Bell, 1989, 1990). EEQT’ s main thesis is best summarized in the

following statement:

NOT ALL IS QUANTUM

Indeed, a pure quantum world would be dead. There would be no events;

nothing would ever happen. There is no dynamics in pure quantum theory

to explain how potentialities become actualities. And we do know that the

world is not dead. We know events do happen, and they do it in finite time.
This means that pure quantum theory is inadequate. John Bell realized this

fact and at first he sought a solution in hidden variable theories (Bell, 1987a).

Rudolf Haag (Haag, 1990a,b, 1995, 1996) takes a similar position; he calls

it an ª evolutionary picture.º EEQT is motivated by the same concerns, but

takes a slightly different perspective. What EEQT has in common with hidden

variable theories [as well as Bell’s (1987b) ª beablesº ] is the realization that
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Fig. 1.

THERE IS A CLASSICAL PART OF THE UNIVERSE

and this part can evolve. ª Weº (IGUS-es) belong partly to this classical

world. Once the existence of the classical part is accepted, then events can

be defined as changes of state of this classical part (Fig. 1). EEQT is the
only theory that we are aware of that can precisely define the two concepts

x Experiment

x Measurement

thus complying with the demands set by Bell (1989, 1990). We define (Jadc-

zyk, 1995)

x Experiment: completely positive one-parameter family of maps of !tot

x Measurement: very special kind of experiment

Moreover, EEQT is the only theory where there is one-to-one correspondence

between a linear Liouville equation for ensembles and an individual algorithm
for generation of events. It is to be noted that, although EEQT does not
involve hidden variables, it does seek for deeper than just statistical descrip-

tions. Namely, it asks the following question:

x How does nature create the unique world around us and our own

unique perceptions?

In other words, EEQT seeks knowledge by going beyond the pure

descriptive orthodox interpretation.3 In agreement with Rudolf Haag, we take

an evolutionary view of nature. This means that the future does not yet exist;

it is being continuously created, and this creation is marked by events. But

how does this process of creation proceed? This is what we want to know.

A hundred years ago the answer would have been: ª by solving differential
equations.º But today, after taking lessons in relativity and quantum theory,

after the computer metaphor has permeated so many areas of our lives, we

3 We would like to quote at this place this, simple, but deep, wisdom; Knowledge protects,
ignorance endangers.
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propose to seek an answer to the question of ª howº in terms of an algorithm.
Thus we set up the hypothesis: Nature uses a certain algorithm that is yet
to be discovered. Quantum theory tells us clearly: this algorithm is nonlocal.
Relativity adds to this: nonlocal in space implies nonlocal in time. Thus we

have to be prepared to meet acausalities in the individual chains of events

even if they average out in large statistical samples. EEQT can be thought

of as one step in this direction. It proposes its piecewise deterministic process

[PDP of Blanchard and Jadczyk (1995a,b)] as the algorithm for generating

a sample history of an individual system. This algorithm should be thought
of as a fundamental one, more basic than the master equation which follows

from it after taking a statistical average over different possible individual

histories. In EEQT it still holds that there is one-to-one correspondence

between PDP and the master equation, and it is easy to think of an evident

and unavoidable generalization of PDP, when feedback is included, which

will go beyond the linear master equation and thus beyond linear quantum
theory. Work in this direction is in progress.

According to the philosophy of EEQT, the quantum state vector is an

auxiliary variable which is not directly observable, even in part. It is a kind

of a hidden variable. But, according to EEQT, there are directly observable

quantitiesÐ and they form the !clas part of !tot. EEQT does not assume
standard quantum mechanical postulates about results of measurements and

their probabilities. All must be derived from the dissipative experiment

dynamics by observing the events at the classical level, i.e., by carring out

continuous observation of the state of !class.

An event is thus a fundamental concept in EEQT and there are two

primitive event characteristics that the algorithm for event generation must
provide: the ª whenº and the ª which,º and indeed PDP is a piecewise determin-

istic algorithm with two ª rouletteº runs for generating each particular event.

First the roulette is run to generate the time of event. Only then, after the

timing has been decided, is there a second roulette run that decides, according

to the probabilities of the moment, which of the possible events is selected

to occur. Then, once these two choices have been made, the selected event
happens and is accompanied by an appropriate quantum jump of the wave

function. After that, continuous evolution of possibilities starts again, roulette

wheels are set into motion, and the countdown begins for the next event.

2. EVENT-GENERATING ALGORITHM

No event can ever happen unless a given quantum system is coupled

to a classical system. In fact, the reader should be warned here that this

statement is not even precise. A precise statement would be: ª no event can

happen to a system unless it contains a classical subsystem.º In many cases,
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however, the total system can be considered a direct product of a pure quantum

system and a classical one. If we restrict ourselves to such a case, then the

simplest nontrivial event generator is a ª fuzzy property detectorº defined as
follows. Let Q be a pure quantum system whose (uncoupled) dynamics is

described by a self-adjoint Hamiltonian H acting on a Hilbert space *. A

fuzzy property detector is then characterized by a positive operator F acting

on *. In the limit of a ª sharpº property we would have F 2 5 ! k F, where

k is a numerical coupling constant (of physical dimension t 2 1). That is the

property becomes sharp for F proportional to an orthogonal projection.
According to a general theory described in Blanchard and Jadczyk

(1995a, b), a property detector is a two-state classical device, with states

denoted 0 and 1 and characterized by the transition operators [using the

notation of Blanchard and Jadczyk (1995a, b)]:g01 5 0, g10 5 F. The master

equation describing continuous time evolution of statistical states of the

quantum system coupled to the detector reads

r Ç 0(t) 5 2 i[H0, r 0(t)] 1 F r 1F

r Ç 1(t) 5 2 i[H1, r 1] 2 1±2 {F 2, r 1} (1)

Suppose at t 5 0 the detector is off, that is, in the state denoted by 0, and

the particle state is c (0), with | c (0)| 5 1. Then, according to the event-

generating algorithm described heuristically in the previous section, the proba-

bility P (t) of detection, that is, of a change of state of the classical device,
during time interval (0, t) is equal to 1 2 |K (t) c (0)|2, where K (t) 5 exp( 2 iH0t
2 L t /2), where L 5 F 2. It then follows that the probability that the detector

will be triggered in the time interval (t, t 1 dt), provided it was not triggered

yet, is p(t) dt, where p (t) is given by

p (t) 5
d

dt
P(t) 5 ^ K (t) c 0, L K (t) c 0 & (2)

Let us consider the case of a maximally sharp measurement. In this case we

would take L 5 | a & ^ a | , where | a & is some Hilbert space vector. It is not

assumed to be normalized; in fact its norm stands for the strength of the

coupling (note that ^ a | a & must have physical dimension t 2 1). From this

formula it can be easily shown (Blanchard and Jadczyk, 1996) that p (t) 5
| f (t) | 2, where the Laplace transform f Ä (z) of the (complex) amplitude f (t) is

given by the formula

f Ä 5
2 ^ a | KÄ

0 | c 0 &

2 1 ^ a | KÄ 0 | a &
(3)

where K0(t) 5 exp( 2 iH0t).
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3. TIME OF ARRIVAL

Let us consider a particular case of time of arrival [see Muga et al.
(1995), for a recent discussion]. Thus we take | a & to denote a position eigens-

tate localized at the point a, that is, ^ x | a & 5 ! k d (x 2 a), k being a coupling

constant representing efficiency of the detector. For the Laplace transform

f Ä of the probability amplitude we obtain then

f Ä 5
2 ! k

2 1 k KÄ
0(a, a)

c Ä 0(a) (4)

where c Ä 0 stands for the Laplace transform of K0(t) c 0.

Let us now specialize to the case of free SchroÈ dinger particle on a line.

We study the response of the point counter to a Gaussian wave packet whose

initial shape at t 5 0 is given by

c 0(x) 5
1

(2 p )1/4 h 1/2 exp 1 2 (x 2 x0)
2

4 h 2 1 2ik(x 2 x0) 2 (5)

In the following it will be convenient to use dimensionless variables for

measuring space, time, and the strength of the coupling:

j 5
x

2 h
, t 5

" t

2m h 2 , a 5
m h k

"
(6)

We denote

j 0 5 x0 /2 h , j a 5 a /2 h , v 5 2 h k (7)

u 6 5 i ! 2 iz 6 (v 2 id ), d 5 j 0 2 j a (8)

The amplitude f Ä of equation (4), when rendered dimensionless, then

reads

f Ä (z) 5 (2 p )1/4 a 1/2e 2 d2 2 2ivd w(u 1 ) 1 w (u 2 )

2 ! iz 1 a
(9)

with the function w (u) defined by

w (u) 5 e 2 u2
erfc( 2 iu) (10)

The time-of-arrival probability curves of the counter for several values of

the coupling constant are shown in Fig. 2. The incoming wave packet starts
at t 5 0, x 5 2 4, with velocity v 5 4. It is seen from the plot that the

average time at which the counter placed at x 5 0 is triggered is about one

time unit, independent of the value of the coupling constant. This numerical

example shows that our model of a counter can be used for measurements
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Fig. 2. Probability density of time of arrival for a Dirac delta counter placed at x 5 0, with

different values of coupling constant alpha. The incoming wave packet starts at t 5 0, x 5
2 4 with velocity v 5 4.

of time of arrival. It is to be noticed that the shape of the response curve is

almost insensitive to the value of the coupling constant. It is also important
to notice that in general the probability P ( ` ) 5 * `

0 p ( t )d t that the particle

will be detected at all is less than 1. In fact, for a pointlike counter as above,

the numerical maximum is , 0.73 (Blanchard and Jadczyk, 1996). For this

reason (i.e., because of the need of normalization) the time-of-arrival observ-
able is not represented by a linear operator.
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